Science Question of the Day:
How can you fight germs before they cause illness?

What Scientists Do:
Scientists use models to better understand how the real world works.

Grab This!
- Pie plate or other shallow plate
- Whole or 2% milk
- Food coloring (different colors if available)
- Dish soap

Talk About This!
- Based on what you saw in this model, how do you think germs react to soap?
- Why do you think the colors "ran away" from the soapy finger?
- Would this work with other types of soap, like hand soap?
- What would happen if you put a soapy finger somewhere other than in the center of the dish?
- Does leaving the soapy finger in the milk for a longer time (i.e. 20 seconds) do something different than a quick dip in the milk?

What’s Going On?
Milk is mostly made out of water, but also contains fats (lipids) in addition to lots of other components. The food coloring sits on the top of the milk and is used as a visual aid to the otherwise invisible phenomenon happening in this experiment. The soap molecules quickly "grab" the fat molecules in the milk. The soap molecules move through the milk to find the fat, disturbing the food coloring and creating the beautiful designs you saw.

Many germs have an outer layer that is made out of lipids. When soap comes into contact with this outer layer, it breaks the "wall" of the germ, leaving the germ broken and unable to infect an organism. This is why frequent and thorough hand washing is the first line of defense against germs!
¡El Ataque del Ooze!
Dia # 5: Cazadores de Gérmenes

Pregunta de Ciencia del Día:
¿Cómo puede combatir los gérmenes antes de que causen enfermedades?

Que Hacen Los Científico(a)s:
Los científicos usan modelos para comprender mejor cómo el mundo real funciona.

¡Agarre Esto!
- Plato de pastel u otro plato poco profundo
- Leche entera o 2%
- Colorante de comida (diferentes colores si están disponible)
- Jabón para platos

¡Haga Esto!
1. Vacíe la leche en el molde para pastel, asegurándose de agregar suficiente para cubrir el fondo. La leche no tiene que ser muy profunda—una ligera capa funcionará. Deje reposar el plato de leche durante un par de minutos para asegurarse de que la leche no se mueva después de servirla. ¡Este plato de leche representa una mano sin lavar!
2. Ponga 3-5 gotas de colorante de comida en una variedad de colores en un círculo en el centro del plato. Este tinte nos ayudará a ver los gérmenes en nuestras "manos" (los científicos tintan los gérmenes en los laboratorios para verlos bien)
3. Ponga una gota de jabón para lavar platos en la punta de su dedo y coloque ese dedo en el centro de su plato de leche. Esto es como lavarse las manos con jabón. ¡Observa lo que sucede con todos los colores!

¡Hable de Esto!
- Según lo que veo en este modelo, ¿cómo cree que reaccionan los gérmenes al jabón?
- ¿Por qué cree que los colores "se escaparon" del dedo enjabonado?
- ¿Funcionara con otros tipos de jabón, como el jabón de mano?
- ¿Qué pasaría si coloca un dedo enjabonado en otro lugar que no sea el centro del plato?
- ¿Deje el dedo enjabonado en la leche durante más tiempo (es decir, 20 segundos) hace algo diferente a un chapuzón rápido en la leche?

¿Qué Está Pasando?
La leche está hecha principalmente de agua, pero también contiene grasas (lipidos) además de muchos otros componentes. El colorante de comida se encuentra en la parte superior de la leche y se usa como una ayuda visual para el fenómeno invisible que ocurre en este experimento. Las moléculas de jabón rápidamente "agarran" las moléculas de grasa en la leche. Las moléculas de jabón se mueven a través de la leche para encontrar la grasa, alterando el colorante de comida y creando los hermosos diseños que vio.

Muchos gérmenes tienen una capa externa que está hecha de lipidos. Cuando el jabón entra en contacto con esta capa externa, rompe la "pared" del germen, dejándolo roto e incapaz de infectar un organismo. ¡Esta es la razón por la que el lavado de manos frecuente y minucioso es la primera línea de defensa contra los gérmenes!